Approximate Dynamic Programming: A Melting Pot of Methods

نویسنده

  • Warren B. Powell
چکیده

Warren Powell is Professor of Operations Research and Financial Engineering at Princeton University, where he has taught since 1981. He is director of CASTLE Laboratory which specializes in the solution of large-scale stochastic optimization, with considerable experience in freight transportation. This work led to the development of methods to integrate mathematical programming and simulation within the framework of approximate dynamic programming, summarized in his book Approximate Dynamic Programming: Solving the Curses of Dimensionality [Wiley, 2007].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximate Incremental Dynamic Analysis Using Reduction of Ground Motion Records

Incremental dynamic analysis (IDA) requires the analysis of the non-linear response history of a structure for an ensemble of ground motions, each scaled to multiple levels of intensity and selected to cover the entire range of structural response. Recognizing that IDA of practical structures is computationally demanding, an approximate procedure based on the reduction of the number of ground m...

متن کامل

OPTIMIZATION OF A PRODUCTION LOT SIZING PROBLEM WITH QUANTITY DISCOUNT

Dynamic lot sizing problem is one of the significant problem in industrial units and it has been considered by  many researchers. Considering the quantity discount in  purchasing cost is one of the important and practical assumptions in the field of inventory control models and it has been less focused in terms of stochastic version of dynamic lot sizing problem. In  this paper, stochastic dyn...

متن کامل

Expected Duration of Dynamic Markov PERT Networks

Abstract : In this paper , we apply the stochastic dynamic programming to approximate the mean project completion time in dynamic Markov PERT networks. It is assumed that the activity durations are independent random variables with exponential distributions, but some social and economical problems influence the mean of activity durations. It is also assumed that the social problems evolve in ac...

متن کامل

On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions

Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...

متن کامل

Bankruptcy Prediction: Dynamic Geometric Genetic Programming (DGGP) Approach

 In this paper, a new Dynamic Geometric Genetic Programming (DGGP) technique is applied to empirical analysis of financial ratios and bankruptcy prediction. Financial ratios are indeed desirable for prediction of corporate bankruptcy and identification of firms’ impending failure for investors, creditors, borrowing firms, and governments. By the time, several methods have been attempted in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008